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Abstract

We present TraceMOP, an explicit-trace runtime verification (RV)
tool. RV monitors if execution traces—sequences of events, e.g.,
method calls—violate formal specifications. TraceMOP monitors
each event as it occurs, but unlike prior RV tools, it also tracks
monitored traces explicitly. So, TraceMOP can help researchers
address several challenges of using RV in testing, e.g., (i) RV over-
head is mostly wasted: 99.87% of monitored traces are duplicates of
the other 0.13%; and (ii) RV violations are often flaky. We describe
TraceMOP’s design, implementation and use via a Maven plugin
and GitHub Actions. We evaluate TraceMOP on 105 open-source
projects.TraceMOP preserves themonitoring functions of amature
RV tool; it is up to 11x faster and uses up to 231.7GB less memory
than our previous prototype. We use TraceMOP to debug four flaky
violations; it is open sourced (https://github.com/SoftEngResearch/
tracemop) and a demo is at https://tracemop.gkevin.com/demo.
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1 Introduction

Runtime Verification (RV) [1–3] monitors if program executions
violate formal specifications (specs). An RV tool takes a program
and its tests, and specs, then it instruments the program to signal
relevant events to monitors, usually automata, at runtime. Monitors
check if traces—sequences of events, e.g., method calls—violate
specs. An RV tool outputs violations if a spec is not satisfied.

In theory, RV checks traces. But, prior RV tools use event-by-
event algorithms that do not explicitly track traces. One reason is
that these RV tools were designed for efficient deployment-time
RV usage for improving system reliability. Such RV tools are now
being adopted, e.g., at Grammatech [4] and in the Linux kernel [5].

There is a growing line of recent research on making RV more
usable for finding more bugs during regression testing, before de-
ployment. Such research include those that aim to (i) find many
confirmed bugs by using RV to monitor passing tests in hundreds of
open-source projects against specs of correct API usage [6–11]; and
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(ii) speed up RV by incrementally running existing RV tools only
on code affected by changes during software evolution [12–15].

An explicit-trace RV tool that outputs traces can help address
challenges to broader RV adoption during testing. For example, we
found [16] that (i) RV’s high overhead is mostly wasted—99.87% of
traces cannot reveal new bugs: they are duplicates of the other 0.13%;
and (ii) RV violations are often flaky, i.e., they non-deterministically
appear in multiple RV runs on the same program (even when tests
always pass). Also, manually inspecting each (of hundreds) spec
violation takes a person hour [6], partly because JavaMOP [17]—the
state-of-the-art RV tool used—does not output violating traces.

Traces are needed to speed up RV by leveraging this finding about
wastefulness, debug flaky violations, and reduce manual inspection
effort. Yet, the explicit-trace prototype from our study [16] is not
easy to use; it is also slow and requires a lot of memory and hard-
disk space. An engineering challenge that we address is how to
efficiently store and retrieve themillions of traces (involving billions
of events) that RV generates in open-source projects [6].

We present the design, implementation, use, and evaluation of
TraceMOP, an explicit-trace RV tool for Java. We build TraceMOP
on top of JavaMOP [17], a decades-old, widely-cited, mature, and
well-engineered RV tool that can scalably monitor multiple specs
simultaneously in one execution. To do so, we first modernize and
extensively refactor several parts of JavaMOP. So, TraceMOP has
all JavaMOP’s features, but it enhances JavaMOP in five ways.
1. JavaMOP is not an explicit-trace RV tool, but TraceMOP is.
2. JavaMOP supports defining specs using Java syntax up to Java 8,

but TraceMOP supports up to Java 17.
3. JavaMOP code is in two repositories—a frontend [17] and the

RV-Monitor backend [18]. TraceMOP unifies these repositories
into a multi-module Maven project and reduces duplicate code.

4. TraceMOP fixes a serious performance regression that has been
in JavaMOP since 2013 [19].

5. JavaMOP in-lines two-decade old JavaParser [20] code for pro-
cessing specs. But, TraceMOP uses the latest JavaParser library.
Table 1 shows seven new TraceMOP features that enhance

our prototype [16]. We implement two optimizations in Trace-
MOP that improve the speed, memory usage, and disk usage of
our prototype. TraceMOP supports multi-module Maven projects
(MMMP) [21]; our prototype supports only single-module projects.
TraceMOP tracks traces if tests spawnmultiple JVMs and it natively
supports comparing two traces to aid debugging; our prototype
cannot. Lastly, we add a Docker image (eases installation), a plugin
(integrates with Maven projects), and a GitHub Action (allows “live”
usage in CI pipelines). These three ease-of-use features can be seen
as enhancements over JavaMOP when trace collection is turned off.

We perform a three-part evaluation of TraceMOP. To do so, we
use 105 open-source projects from our study [16] and 160 specs of
correct Java API usage that are widely used in the RV literature [22].
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Table 1: New TraceMOP features enhancing our prototype; the last 3 rows also enhance JavaMOP when trace tracking is off.

Feature Description
More efficient trace tracking TraceMOP tracks traces more efficiently (in time and space), using new data structures that we implement.
MMMP support TraceMOP supports single- and Multi-Module Maven Projects (MMMP); prototype supports only single.
Multi-JVMs trace tracking TraceMOP supports collecting traces even if a project spawns multiple JVMs (e.g., one per test).
Trace Comparison TraceMOP allows comparing RV traces across multiple runs, e.g., for debugging flaky violations.
Docker support TraceMOP ships with a Docker image where its required environment is pre-installed.
Maven Plugin TraceMOP comes with a Maven plugin that allows seamless integration with a project’s build system.
GitHub Action TraceMOP provides a custom GitHub Action that allows users to more easily integrate RV in projects’ CI pipelines.

Figure 1: TraceMOP’s architecture and its main components.

1 CSC (Collection c, Iterator i){

2 Collection c;

3 event sync after() returning(Collection c) :

4 call(* Collections.synchronizedCollection(Collection)){ this.c = c; }

5 event syncMakeIter after(Collection c) returning(Iterator i) :

6 call(* Collection+.iterator()) && target(c) && if(Thread.holdsLock(c)) {}

7 event asyncMakeIter after(Collection c) returning(Iterator i) :

8 call(* Collection+.iterator()) && target(c) && if(!Thread.holdsLock(c)) {}

9 event useIter before(Iterator i) :

10 call(* Iterator.*(..)) && target(i) && if(!Thread.holdsLock(this.c)) {}

11 ere : (sync asyncMakeIter) | (sync syncMakeIter useIter)

12 @match {/*print violation*/} }

Figure 2: CSC Spec, written in TraceMOP’s AspectJ-based DSL.

1 public int sum(List<Integer> list) {

2 Collection<Integer> c = Collections.synchronizedCollection(list);

3 /∗ Generate event: Collections_SynchronizedCollection.sync ∗/

4 int total = 0;

5 Iterator<Integer> iterator = c.iterator();

6 /∗ Generate event: Collections_SynchronizedCollection.asyncMakeIter ∗/

7 while (iterator.hasNext()) total += iterator.next();

8 /∗ Generate event: Collections_SynchronizedCollection.useIter ∗/

9 return total;

10 }
11 @Test public void testSum(){ assertEquals(6, sum(Arrays.asList(1, 2, 3))); }

Figure 3: An example (toy) monitored code and its unit test.

First, we compare TraceMOP’s violations. Excluding flaky vi-
olations, TraceMOP finds all violations that JavaMOP finds. So,
TraceMOP preserves JavaMOP’s monitoring functionality.

Second, we compareTraceMOP’s time and space overheads with
those of our prototype [16]. (We do not know any other explicit-
trace RV tool for simultaneously and scalably monitoring multiple
specs.) TraceMOP is up to 11x (mean: 1.2x) faster than our proto-
type, which crashes on 13 (of 105) projects. TraceMOP uses up to
231.7GB (mean: 9.7GB) less memory. Lastly, TraceMOP’s compact
representation saves up to 50.5GB (mean: 1.6GB) in disk space.

Finally, we perform a proof-of-concept study on debugging flaky
violations by comparing traces from two TraceMOP runs: one
found a violation and another did not, for a program with no failing
test. (JavaMOP and our prototype cannot compare traces.) Trace-
MOP helped us find root causes of four flaky violations. So, Trace-
MOP can aid future work on flaky violations (or debugging non-
flaky ones). TraceMOP and all our experimental scripts and data
are open sourced: https://github.com/SoftEngResearch/tracemop.

2 Example

Fig 2 shows an example spec, CSC, that we use RV to check; it previ-
ously helped find several confirmed bugs [6, 9]. CSC was formalized
by other researchers [22] to check this safety property: code that ob-
tains a Collections.synchronizedCollection() must synchro-
nize on that collection before iterating over its contents. Failure to
do so can cause code to behave non-deterministically [23].

Lines 3–10 define four relevant events. The sync event (lines 3–
4) is signaled after calling Collections.synchronizedCollect
ion() to obtain collection c. Event syncMakeIter (lines 5–6) is
signaled after c.iterator() is called from code that synchronizes
on c, and event asyncMakeIter (lines 7–8) is signaled after such
a call is made from code that does not synchronize on c. Lastly,
event useIter (lines 9–10) is signaled before calling any method
on c.iterator() in code that is not synchronized on c. Line 11
states CSC’s safety property, formalized as an extended regular
expression. Finally, line 12 is a handler that prints a violation when
monitors observe traces that match the property.

Fig 3 shows toy example code that sums a list of integers and
a test (line 11) that almost always misses a subtle bug in sum:
iterator is used without synchronizing on c (lines 5 and 7). Using
RV to monitor the test reveals the bug: all CSC monitors observe
the violating trace, sync asyncMakeIter. TraceMOP records all
traces observed by monitors, whether they violate the spec or not.

3 Implementation

TraceMOP’s inputs and outputs are those listed in §1, plus moni-
tored traces as an extra output (in addition to violations).
Architecture. Figure 1 shows TraceMOP’s high-level architecture,
consisting of five steps. In step 1 , Instrumenter uses AspectJ to
instrument the code under test (CUT) and the tests based on the
specs, such that relevant events are signaled to monitors at runtime.
Unlike in JavaMOP, Instrumenter also collects the name of the
current-running test, so users can re-run a test to obtain a trace or
debug a violation (without re-running all tests). In step 2 , monitors
are dynamically synthesized to check traces. Unlike in JavaMOP,
monitors notify TraceCollector (step 3 ) of each observed event.

After the program terminates but before the JVM shuts down,
TraceConstructor ( 4 ) processes TraceCollector’s data struc-
tures (presented shortly) to collect monitored traces. Persisting all
monitored traces to disk takes a lot of space, so TraceReducer (step
5 ) uses two disk-space saving optimizations: it stores only unique
traces along with their frequency, and it compacts individual traces
using a strategy that we discuss next.
Optimizations and Data Structures. To improve space efficiency,
TraceMOP stores only the unique traces observed across all mon-
itors. Suppose sum() in Fig 3 is called a million times, each time
on a three-element list. Every time line 2 is called, RV will create
a new monitor. Since list.size() is unchanged in those million
iterations, all related CSC monitors will observe identical traces.
But, TraceMOP only stores one trace and maps all other monitors
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Figure 4: Data structure for storing formulaic specs’ traces.

Figure 5: Data structure for storing raw specs’ traces.

to that unique trace, effectively reducing the number of recordable
traces and events from millions (which is typical) to just a handful.
This design is justified by our previous finding [16]: only 0.13% of
traces monitored during testing are unique.

Internally, TraceMOP uses two data structures to optimize trace
collection, one per category of specs. CSC is in the first category
of formulaic specs: the formula that expresses its safety property
drives its monitor synthesis algorithm and one monitor will be
created for each set of related objects that are its parameter types
at runtime. The second category are raw specs that users program
themselves, without using any logical formalism to express a safety
property. Only one monitor is ever created for a raw spec.

Fig 4 shows a data structure used by the TraceCollector to
store traces for formulaic specs; it is inspired by prefix trees. This
example (not related to sum()), shows six monitors, m1 to m6, and
three unique traces. Monitor m1 so far observed trace e1 e2, monitor
m2 observed the trace e2, and monitors m3 to m6 observed the
trace e2 e4. Monitors m3 to m6 observed the same trace, so they
point to the same node. When a monitor observes a new event,
TracesCollector first searches the children of the node that the
monitor currently points to. If the received event is not a child of the
node that the monitor currently points to, TraceCollector creates
a child node and maps the monitor to that new node. Otherwise,
TraceCollector maps the monitor to the existing child node that
represents the received event.

For raw specs, where there is only one trace, the prefix-tree like
structure is inefficient. So, TraceCollector uses a different data
structure, shown in Fig 5. There, monitors maintain their own list
of events, and each element in the list includes information on
frequency of consecutive occurrence. For example, monitor m7 has
the trace e1 e1 e1 e1 e1 e2 e3, but TraceCollector only stores
the events e1, e2, and e3, along with their frequencies.

4 Usage

Setting up. A TraceMOP environment can be set up in three ways.
First, if Docker support is available, then users can simply set up
the environment like so:

~/tracemop$ docker build -f scripts/Dockerfile . -t tracemop

~/tracemop$ docker run -it tracemop /bin/bash

Second, users can simply use our pre-built Docker image like so:
~/tracemop$ docker pull softengresearch/tracemop

~/tracemop$ docker run -it softengresearch/tracemop

Finally, if Docker support is not available, users can manually run
the commands in our Dockerfile [24]. Any of these three approaches
should set up the environment needed to use TraceMOP (with, e.g.,
Java and Maven installed).
Using TraceMOP as a Maven plugin. TraceMOP’s Maven plu-
gin makes it easier to integrate with Maven-based projects. To use
the plugin, first run the Maven install command from TraceMOP’s
directory and then run the plugin from a target project’s directory:
~/tracemop$ mvn install

~/tracemop$ cd ~/project

~/project$ mvn edu.cornell:tracemop-maven-plugin:1.0:run

Alternately, after running the above Maven install command and
changing to the project’s directory, users can add TraceMOP’s
Maven plugin to the project’s config (i.e., pom.xml) file by following
our instructions in [25], and then running this shorter command:
~/project$ mvn tracemop-maven-plugin:run

With either TraceMOP Maven plugin command, users can op-
tionally specify (i) whether to collect traces (default: true) and
(2) the output directory to store traces (default: target/tracemop).
The first of these next two commands stores traces in a non-default
location; the second runs TraceMOP without trace tracking:
~/project$ mvn tracemop-maven-plugin:run -DoutputDirectory=another-dir

~/project$ mvn tracemop-maven-plugin:run -DcollectTraces=false

Using TraceMOP with GitHub Actions. If a Maven project has
already set up CI pipelines using GitHub Actions, all that a user
needs to do to enable TraceMOP is add these lines to their GitHub
Actions workflow file (no need to modify pom.xml):
- uses: SoftEngResearch/tracemop@master

with:

collect-traces: true

output-directory: traces-output-directory

Both parameters are optional. By default in GitHub Actions
pipelines, TraceMOP collects traces, saves them to a traces di-
rectory, and uploads that directory to GitHub. Our single-line
change [26] integrates TraceMOP with GitHub Actions on our
fork of an open-source project, and (within three months of this
paper’s submission) readers can download the traces [27] or see
the violations (after clicking “Post Run SoftEngResearch/trace-
mop@master”) [28]. Our README has screenshots of these pages.
Using TraceMOP as a Java agent (for non-Maven projects).
TraceMOP’s Java agent allows to integrate it with arbitrary Java
programs, with or without Maven. Versioned TraceMOP Java
agents can be obtained from its release page [29]. Users can also
build the agent using our instructions [30]. One can use Trace-
MOP’s agent to monitor a Java program whose main method is in
Main.java like so (after compiling Main.java):
java -javaagent:${PATH-TO-AGENT}/tracemop-agent.jar Main

TraceMOP’s Java agent can also be used with build systems, e.g.,
one can follow our instructions [31] to add TraceMOP to a Maven
project’s pom.xml file, and then run “mvn test” to monitor tests.
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Figure 6: Left: distribution of prototype minus TraceMOP times (seconds). Middle and right: distributions of prototype minus

TraceMOPmemory (GB) and disk (MB) usage. Positive values mean TraceMOP uses less.

Table 2: Summary statistics on 105 projects that we evaluate:

no. of test methods (#Tests), test time w/o RV in seconds (t),

lines of code (SLOC), % statement coverage (𝑐𝑜𝑣𝑠 ), % branch

coverage (𝑐𝑜𝑣𝑏 ), no. of GitHub commits (#SHAs), years since

first commit (age), and no. of stars (#8).

#Tests t SLOC 𝑐𝑜𝑣𝑠 𝑐𝑜𝑣𝑏 #SHAs age #8
Mean 175.3 14.2 15,867.0 58.4 50.7 513.8 11.3 199
Med 43 4.5 5,191 61.1 53.1 176 11 48
Min 1 1.5 193 0.1 0.0 3 3 1
Max 2,708 159.2 4.3×105 96.5 100.0 4,860 27 2,448
Sum 18,407 1,489.2 1.7×106 n/a n/a n/a n/a 20,895

5 Evaluation

Experimental Setup. Table 2 summarizes our 105 evaluation sub-
jects. “n/a” is a meaningless sum. Min 𝑐𝑜𝑣𝑏 is 0%: Kuangcp/NettyB
ook2 does not test a branch. We randomly select these projects from
our corpus of 1,544 projects [16]; (i) our prototype crashes on 13
due to running out of memory, being MMMP, or spawning multiple
JVMs; (ii) RV generates over one million events for 87; and (iii) RV
generates fewer than 10,000 events for five. (These characteristics
do not correlate with RV overhead [16].) We run experiments on
an Intel® Xeon® Gold 6348 machine with 512GB of RAM and 112
cores, Ubuntu 20.04.6 LTS, Java 8, and Maven 3.8.8.

5.1 Comparison with JavaMOP

We validate that TraceMOP preserves the JavaMOP’s monitoring
functionality by comparing unique violations found by JavaMOP,
TraceMOP, and our prototype for all 86 formulaic specs. We ex-
clude raw specs as many of them had flaky violations, making
comparison hard. All three tools find the same set of 1,379 unique
violations in all 105 projects. So, we have initial confidence Trace-
MOP’s implementation, relative to JavaMOP, whose monitoring
functionality it preserves. On average, TraceMOP is 2.4x (max:
13.1x) slower than JavaMOP, as expected: TraceMOP does more
work to track traces. Without trace tracking, (i) TraceMOP is up
to 8.0x (mean: 1.2x) faster than JavaMOP due to the performance
regression in JavaMOP that TraceMOP fixes; and (ii) TraceMOP’s
location-tracking makes it sometimes slower than JavaMOP.

5.2 Comparison with prototype

Figure 6 compares TraceMOP’s time, maximum memory usage,
and disk usage on only 92 projects where our prototype [16] runs.
Time Comparison. TraceMOP is often faster than our prototype.
The max relative speedup is 999.9% (equivalently, 11x). The average
(median) is 19.1% (1.3%). The max absolute speedup saves 23.8
minutes (Figure 6, left); the average (median) is 51.0 (1.1) seconds.
Excluding outliers, roughly 25% of projects see no change in time,
25% see a slowdown, and around 50% see a speed-up. With outliers
TraceMOP is faster on 53.3% of these projects. Note that users can

turn off TraceMOP’s optimizations to get the effect of using the
prototype when TraceMOP is slower.
MaximumMemory Usage. TraceMOP often uses less memory
than our prototype. The max relative reduction is 377% (equiva-
lently, 4.8x). The average (median) is 14.5% (4.5%). The max absolute
reduction is 231.7GB (Figure 6, middle); the average (median) is
9.7 (0.7) GB. Excluding outliers, roughly 25% of projects see no
change in memory usage, 25% see an increase, and around 50% see
a reduction in memory usage.
Disk Usage. TraceMOP always uses less disk space than our proto-
type. Themax relative reduction is 6.7×105% (equivalently, 6,707.7x).
The average (median) is 19,959.4% (587.5%). The max absolute re-
duction saves 50.5GB (Figure 6, right); the average is 1.6GB.

Overall, TraceMOP is faster in 49 (53.3%) and uses less memory
in 53 (57.6%) of these projects; it always uses less disk space. Users
can turn off TraceMOP’s optimizations to get the effect of using the
prototype when TraceMOP is slower or more memory intensive.

5.3 Debugging flaky violations

To begin demonstrating the usefulness of TraceMOP for address-
ing challenges of using RV during testing, we use it in a small
proof-of-concept study to debug four flaky violations. Here, we
describe one of those flaky violations and how TraceMOP helped
us. Our artifacts contain descriptions of the others [32]. Project
contentful/contentful.java violates a safety property (not CSC):
a collection fromwhich an iterator is obtained must not be modified
while that iterator is in use. Such violation can escape Java’s Concur-
rentModificationException if the iterator is being used in a different
thread than the one in which the collection is modified [33, 34].

We obtain a trace like this from the run where the violation
appeared—create.1 useiter.1 modify.3 useiter.2 useiter.1. In
this trace, location 1 creates an iterator from a collection and also
uses that iterator at the same location. Then, at location 3, the col-
lection is modified. Next, execution proceeds back to location 2 and
then 1. Comparing this trace with a non-violating one, we find why
the violation is flaky. The collection is modified during iteration
at location 3 in some but not all thread interleaving. Future work
could build on TraceMOP to better deal with flaky violations.

6 CONCLUSION

TraceMOP is an explicit trace RV tool for Java that can support
research on addressing several challenges of using RV for testing.
TraceMOP enhances JavaMOP and our earlier prototype. Trace-
MOP finds the same set of non-flaky violations as JavaMOP. Com-
pared to our prototype, TraceMOP is often faster, uses less memory
and disk space, and helped us understand flaky violations.
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