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Abstract—Runtime verification (RV) found hundreds of bugs
by monitoring passing tests against formal specifications (specs).
RV first instruments a program to obtain relevant events, e.g.,
method calls, to monitor. A hindrance to RV adoption, especially
in continuous integration, is its high overhead. So, prior work
proposed spec-driven evolution-aware techniques to speed up RV.
They use complex analysis to re-monitor a subset of specs related
to code impacted by changes. But, these techniques assume that
RV overhead is dominated by monitoring time, and their designs
often sacrifice safety (ability to find all new violations) for speed.

We present IMOP, the first instrumentation-driven evolution-
aware RV framework. IMOP leverages a recent observation that
RV overhead during testing is often dominated by instrumenta-
tion, not monitoring. IMOP embodies a family of 14 techniques
that aim to safely speed up RV by simply re-instrumenting only
changed code. Instrumentation from the old revision is re-used
for unchanged code, and all specs are re-monitored in the new
revision. We implement IMOP as a Maven plugin and evaluate it
on 2,028 revisions of 66 projects, using 160 specs of correct JDK
API usage. IMOP is safe by design. It is up to 40.2x faster than re-
running RV from scratch after each change, and 17.8x and 6.7x
faster than safe and unsafe spec-driven techniques, respectively.
IMOP is faster than just applying regression test selection to RV.

I. INTRODUCTION

Runtime verification (RV) [43], [60], [73] monitors execu-
tions of possibly buggy programs against formal specifications
(specs) of correct or safe behavior. Practically, RV checks if
traces—sequences of program actions, such as method calls or
field accesses—satisfy the specs. To do so, RV first instruments
a program to signal relevant program actions as runtime
events. Then, monitors (usually automata) are dynamically
synthesized [61] from the specs to check the traces. A monitor
raises a violation if a trace does not satisfy a spec. Each
spec definition includes a handler—user-provided, e.g., error-
recovery, code to run if violations occur.

Thanks to decades of research [5], [10], [14], [21], [22],
[31], [36], [46], [59], [70], [84], [95], [100], RV is now being
used to monitor deployed software [6], [32]–[34], [108]. Doing
so is appealing: preemptive violation detection and sound
error recovery can make deployed software always satisfy the
specs [27]. So, most RV research targets deployment-time RV.

Our work is on RV during testing, before deployment.
Researchers showed that using RV during testing amplifies the
bug-finding ability of tests. They used handlers that print vio-
lations during RV of passing tests against specs of correct JDK
API usage. By inspecting those violations, these researchers

found hundreds of confirmed bugs that testing alone missed
in many projects [80], [82], [94]. Increased bug-finding ability
occurs because specs provide additional test oracles that may
be hard to express as test assertions. (§II has examples.)

Despite its bug-finding benefits, a main hindrance to RV
adoption during testing, especially in continuous integration,
is that it incurs high runtime overheads. Those overheads
persist despite advances on algorithms [26], [29], [66] and
data structures [28], [87], [93] for speeding up RV.

Prior work proposed 12 evolution-aware techniques to
speed up RV during testing of evolving software by focusing
monitoring effort on code impacted by changes [77]–[79],
[126]. These techniques are spec-driven, use complex program
analysis, and work in three main steps. Given new and old
code revisions and a set of specs (multiple specs are monitored
simultaneously): (i) find code impacted by changes, (ii) find
a subset of affected specs that are related to impacted code,
and (iii) re-monitor only affected specs in the new revision.

Spec-driven evolution-aware RV techniques have two draw-
backs. First, they assume that RV overhead is dominated by
monitoring time to signal events, create monitors, process
events, etc., [77]. So, they may provide sub-optimal speedups
if RV overhead is not dominated by monitoring. Second, 10 (of
12) of them provide good speedups but they are designed to
be unsafe, i.e., they may miss some new violations after code
changes [78]. The other two are safe by design, but slower.

We present IMOP, the first framework for an alter-
nate, instrumentation-driven approach to evolution-aware RV.
(MOP: Monitoring Oriented Programming [27], the RV style
that we use.) IMOP is inspired by a recent study [52], which
found that over 51% of RV overhead during testing in 1,322 of
1,544 projects is due to instrumentation. In deployment-time
RV, instrumentation is a one-time start-up cost. But, during
testing, these instrumentation costs should be reduced so that
they are not entirely re-incurred after every code change.

The idea behind IMOP is that amortizing instrumentation
costs across code revisions can speedup RV during test-
ing [52]. IMOP embodies a family of 14 techniques that aim to
speed up RV by simply re-instrumenting only changed code.
The old revision’s instrumentation is re-used for unchanged
code, and all specs are re-monitored in the new revision. That
way, IMOP reduces costs of unnecessarily re-instrumenting
unchanged code in the new revision.
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IMOP first identifies changed code, then it re-instruments
only changed code using all specs. Lastly, an RV tool monitors
the instrumented code. IMOP techniques differ in (i) the
granularity level at which they find changes, (ii) whether they
are specific to an instrumentation framework or work with any
framework, and (iii) if they re-instrument all changed code in
3rd-party libraries or only changed library code that is used.

IMOP techniques are agnostic or specific to instrumentation
frameworks. We propose 11 agnostic techniques and realize a
12th. The other two techniques are specific to AspectJ [71],
which is used in JavaMOP [63], [67], the RV tool in this paper;
we are the first to evaluate them for RV. Separately, eight
techniques are usage-unaware: they re-instrument changed
library classes even if the monitored program does not use
them. The other six techniques are usage-aware and aim to
avoid re-instrumenting changed but unused library classes.

We implement IMOP as a Maven plugin. Our evaluation
of IMOP involves using it to monitor the execution of 17,546
developer written tests in 2,028 revisions of 66 projects, using
160 specs of correct JDK API usage protocols.

IMOP is up to 40.2x (mean: 10x) faster than full RV (re-
running RV from scratch after each change), and up to 17.8x
(mean: 5.8x) and 6.7x (mean: 2.4x) faster than the fastest safe-
by-design and fastest unsafe-by-design spec-driven techniques,
respectively. Across all projects, IMOP saves up to 40.4 hours
compared to full RV, and 24.2 hours and 6.9 hours, compared
to safe and unsafe spec-driven techniques, respectively.

To evaluate safety, we compare sets of new violations from
IMOP, full RV, and spec-driven techniques. Usage-unaware
IMOP techniques are as safe as full RV; usage-aware ones
are at least as safe as safe spec-driven techniques.

Lastly, we compare and combine IMOP with regression
test selection (RTS), which speeds up regression testing by
only re-running tests impacted by changes [125]. We integrate
two RTS tools, Ekstazi [48], [49] and STARTS [81], [83]
with IMOP and compare speedups from combining RTS with
(i) full RV, (ii) safe and unsafe spec-driven techniques, and
(iii) the best IMOP technique in 10 projects. IMOP is faster
than just applying RTS to full RV, but IMOP plus RTS
provides more speedup than IMOP alone on some projects.

This paper makes the following contributions:

⋆ Framework. IMOP is the first instrumentation-driven
evolution-aware RV framework, and realization of the idea
to speed up RV by amortizing instrumentation costs [52].

⋆ Techniques. We propose 11 of IMOP’s 14 techniques and
we are the first to evaluate two of the other three for RV.

⋆ Implementation. We implement IMOP for Java as a Maven
plugin that integrates easily with open-source projects.

⋆ Combination. We compare and combine RTS with
instrumentation-driven evolution-aware RV techniques.

⋆ Evaluation. We conduct the largest evaluation of evolution-
aware RV and the first evaluation of IMOP’s safety and
applicability to multiple instrumentation frameworks.

Our plugin, scripts, and experimental data are available at
https://github.com/SoftEngResearch/imop.

1StringTokenizer_HasMoreElements(StringTokenizer i) {
2 event hasnexttrue after(StringTokenizer st) returning (

boolean b):
3 ( call(boolean StringTokenizer.hasMoreTokens()) || call(

boolean StringTokenizer.hasMoreElements())) && target
(st) && condition(b){}

4 event next before(StringTokenizer st):
5 ( call(* StringTokenizer.nextToken()) || call(*

StringTokenizer.nextElement())) && target(st){}
6 ltl: [](next => (*) hasnexttrue)
7 @violation {/*print violation*/)} }

Fig. 1: STHM Spec, written in an AspectJ-based DSL.
1SynchronizedCollection(Collection c, Iterator i) {
2 Collection c;
3 event sync after() returning(Collection c):
4 call(* Collections.synchronizedCollection(Collection)){

this.c = c; }
5 event syncMakeI after(Collection c)returning(Iterator i):
6 call(* Collection+.iterator()) && target(c) && condition(

Thread.holdsLock(c)) {}
7 event asyncMakeI after(Collection c)returning(Iterator i):
8 call(* Collection+.iterator()) && target(c) && condition

(!Thread.holdsLock(c)) {}
9 event useI before(Iterator i):

10 call(* Iterator.*(..)) && target(i) && condition(!Thread.
holdsLock(this.c)) {}

11 ere : (sync asyncMakeI) | (sync syncMakeI useI)
12 @match {/*print violation*/} }

Fig. 2: CSC Spec, written in an AspectJ-based DSL.
II. EXAMPLES AND BACKGROUND

Specs and how RV monitors them. To monitor the
StringTokenizer HasMoreElements (STHM) spec in Fig-
ure 1, RV first instruments the monitored program based
on events defined on lines 2–5. Each definition includes
(i) an event name like hasnexttrue on line 2, that is used
to specify properties; (ii) relevant program actions for each
event, e.g., hasnexttrue captures calls to hasMoreTokens()
or hasMoreElement() on a StringTokenizer st that re-
turn true, while next captures calls to st.nextToken() or
st.nextElement(); and (iii) whether to signal events before
or after these calls.

At runtime, RV synthesizes monitors to process events that
are signaled from the instrumented code. STHM’s monitors
check if traces satisfy the linear temporal logic (LTL) safety
property on line 6: “always, a next event on st implies
that the previous event on st was hasnexttrue”. If a
trace does not satisfy this property, the handler on line 7 is
invoked. Handlers can be any user-provided code. But, for RV
usage during testing, we print a message to aid debugging.
STHM helped find bugs in code that can crash by calling
nextToken() or nextElement() on an empty st [80], [82].
The monitored tests always pass because all input st were not
empty, but inspecting STHM violations helped find the bugs.

We need at least two specs to explain spec-driven tech-
niques. So, Figure 2 shows the SynchronizedCollection

(CSC) spec, whose safety property on line 11 is violated if a
trace matches one of two cases. (i) A synchronized collection c

is created (sync, lines 3–4), but an Iterator i is then created
from code that does not hold the lock on c (asyncMakeI,
lines 7–8). (ii) After a sync event, one correctly creates i

from code that holds the lock on c (syncMakeI, lines 5–6),
but then later uses i in code that does not hold the lock on c

(useI, lines 9–10). Code producing such traces can be non-
deterministic [30]. CSC also helped find several bugs [80], [82].
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1 public class A {
2 public static String a(List<String> list) {
3 Collection<String> c =
4 Collections.synchronizedCollection(list);/*INSTR: CSC.sync*/
5 Iterator<String> i = c.iterator();/*INSTR: CSC.asyncMakeI*/
6 boolean b = /*INSTR: CSC.useI*/!i.hasNext();
7 return b ? null : /*INSTR: CSC.useI*/Lib1.lower(i.next()); }
8 }
9 class ATest {

10 @Test public void testA() {
11 List<String> l = Arrays.asList(new String[]{"FOO"});
12 assertEquals("foo", A.a(l)); }
13 }
14 public class B {
15 public static String b(String s) {
16 -String out = "none";
17 +String out = "nil";
18 StringTokenizer t = new StringTokenizer(s);
19 if (t.hasMoreTokens()/*INSTR: STHM.hasnexttrue*/) {
20 /*INSTR: STHM.next*/out = t.nextToken();
21 } Lib2.process(out); return out; }
22 }
23 public class BTest {
24 @Test public void testB(){assertEquals("f", B.b("f b"));}}

Fig. 3: Example of instrumented code and unit tests.

Instrumentation. Figure 3 shows old and new revisions of
example code (classes A and B) and tests (classes ATest and
BTest). The code uses library classes Lib1 (line 7) and Lib2

(line 21), which have call sites for CSC and STHM events,
respectively, that we elide. The new revision assigns “nil” to
out instead of “none”. Before monitoring the tests against CSC
and STHM in both revisions, full RV first instruments the code
based on CSC and STHM event definitions (violet comments).
Spec-driven evolution-aware RV techniques. The main idea
in spec-driven techniques [78] is that specs that are not affected
by changes need not be re-monitored in the new revision.
Doing so yields the same monitoring outcome as in the old
revision for those specs (assuming deterministic tests). So, in
Figure 3, the class-level change-impact analysis used by spec-
driven techniques first finds only B and BTest as impacted by
the change. CSC is unrelated to B and BTest, so STHM is the
only affected spec that is re-monitored in the new revision. If
RV overhead is dominated by monitoring CSC, then RV can be
much faster in the new revision. Fast spec-driven techniques
are unsafe by design; their less conservative change-impact
analysis can make them miss affected specs. §IV gives more
details on the two spec-driven techniques in this paper.
Instrumentation-driven evolution-aware RV techniques. In
Figure 3, suppose full RV instruments only CSC in A and Lib1

and only STHM in B and Lib2. Also, assume that the only
change is the one shown. Then, our IMOP techniques aim
to only re-instrument B after the change. So, only 25% of
classes are re-instrumented. By re-monitoring all specs in the
new revision, these IMOP techniques are safe by design.

III. IMOP

A. Overview

Figure 4 is a high-level overview of IMOP; it abstracts away
individual techniques’ details. Conceptually, IMOP’s inputs
are (i) old and new revisions of the code under test (CUT),
including source code and tests; (ii) a list of required 3rd-party
library (e.g., jar) paths and their declared versions (e.g., 4.5.2)
that the CUT uses in both revisions; (iii) checksums of .class

Fig. 4: IMOP’s high-level workflow.
files in the old revision; (iv) the specs; and (iv) a config file
with the IMOP technique to use, whether to ignore changes
to debug information (line numbers, comments, space, etc.),
thread count to use, whether to check if the CUT uses changed
library classes, and the instrumentation framework to use.

IMOP works in five main steps. The Diff Engine (step
1 ) takes both revisions of the CUT and the library paths,
and finds .class files that changed. If so configured, the
Diff Engine can use Bytecode Cleaner (step 2 ) to find only
changed .class files where non-debug information changed,
and compute their checksums for the next revision. Files where
only debug information changed need not be re-instrumented,
but reasoning about debug information incurs a cost [49]. If
Bytecode Cleaner is used, changed classes are .class files
whose bytecode checksums (after ignoring debug information)
in the new revision differ from those in the old revision.

Diff Engine can also be configured to call Usage Checker
(step 3 ), which checks if changed library classes are used by
the CUT. Unused changed classes need not be re-instrumented.
Doing so is wasteful: the new revision’s monitoring outcome
cannot depend on unused classes. But, checking usage incurs
a cost. Instrumentation Engine (step 4 ) re-instruments (in
sequence or in parallel) only Diff Engine’s output using the
configured framework (default: AspectJ). Instrumentation from
the old revision is re-used for all other (unchanged) classes.

Finally, IMOP invokes an RV tool (step 5 ) to monitor the
instrumented CUT and libraries and report any violation. To
bootstrap, all CUT and library classes are treated as changed
in the first revision. Note that Figure 4 is conceptual, e.g., the
old and new revisions may not be explicit inputs (§III-B).

B. Techniques

Design rationale. Realizing the simple idea behind IMOP
requires addressing the technical challenge of simultaneously
(i) speeding up RV by finding and re-instrumenting (ideally)
only changed code, (ii) preserving safety, and (iii) aiming for
overheads that approach a lower bound of full RV minus in-
strumentation costs. Meeting all three goals requires carefully
balancing the tradeoffs that they induce.

In brief, the tradeoff space is as follows. More precise
change identification can reduce re-instrumented classes and
help goal (i), but its analysis can be more costly and hurt goal
(iii). Also, analyzing libraries is necessary for safety [78] and
helps goal (ii), but doing so increases analysis cost and hurts
goal (iii). Coarse-grained analysis of libraries, e.g., by treating
a jar as changed if any of its contents changed, can be faster
and help goals (ii) and (iii). But, such analysis can lead to
unnecessary re-instrumentation, hurting goal (i), if whole-jar
instrumentation is costly. Lastly, using more threads can speed
up IMOP, but it requires more hardware resources.
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TABLE I: IMOP techniques and the notation that we sube-
quently use for them. Table II explains the notation.

INSTRUMENTATION TARGET NOTATION

Usage Unaware, Agnostic of Instrumentation Framework (§III-B1)
Whole changed jars, online, sequential UJs

o

All class files in changed jars, online, parallel UJp
o

Changed class files in changed jars, online, sequential UCs
o

Changed class files in changed jars, online, parallel UCp
o

Changed bytecode in changed jars, online, sequential UBs
o

Changed bytecode in changed jars, online, parallel UBp
o

Changed bytecode in changed jars, stored hashes, sequential UBs
h

Changed bytecode in changed jars, stored hashes, parallel UBp
h

Usage Aware, Agnostic of Instrumentation Framework (§III-B2)
Changed bytecode used by CUT at runtime, sequential ABsd

h

Changed bytecode used by CUT at runtime, parallel ABpd
h

Changed bytecode reachable statically by CUT, sequential ABss
h

Changed bytecode reachable statically by CUT, parallel ABps
h

Usage Aware, Specific to AspectJ Instrumentation Framework (§III-B3)
Compiler-determined changed class files, default loader ajcdef

Compiler-determined changed class files, shared loader ajcone

Design justification. IMOP embodies a family of 14 simple
techniques—11 of which we propose—at different points in
the tradeoff space. Most of these techniques perform best in
at least one project (§IV), suggesting that there is no one-size-
fits-all technique that works for all projects, and justifying our
design of IMOP to have several techniques.
Running example. We will use Figure 5 to illustrate how

Fig. 5: Running example.

some IMOP techniques
work. There, classes C1,
C2, and T (a test class)
are in the CUT, while
classes L1–L4 are in li-
braries. Edges show us-
age, e.g., the arrow from
C2 to C1 means “C2 uses

C1”. Purple-colored classes changed. L1 is colored pink be-
cause its .class file changed but its bytecode did not. For
any code change, full RV re-instruments all classes in Figure 5.
IMOP aims to reduce wasted re-instrumentation.
Design details. For ease of presentation, we organize IMOP’s
14 techniques into three groups in Table I. These techniques
primarily differ in how they handle libraries—they all re-
instrument only changed CUT classes in sequence, which is
fast: few CUT classes typically change at once [78]. Tech-
niques that check for changed bytecode in changed jars also
check for changed bytecode in CUT classes. We next discuss
how each technique handles changes in 3rd-party libraries.

1) Usage-Unaware, Framework-Agnostic Techniques:
Eight IMOP techniques are usage unaware (U); they re-
instrument changed library code without incurring the cost to
check if the CUT uses such changed code. These techniques
are also agnostic, and can work with any instrumentation
framework. Two of these techniques re-instrument an entire
changed library (J). IMOP treats a library as changed if it
(i) was not on the old revision’s classpath; (ii) has different
declared versions in both revisions; or (iii) has changed
contents. One technique, UJs

o, (Table II explains the nota-
tion) re-instruments changed libraries sequentially. The other

technique, UJp
o, re-instruments all changed library classes

in parallel. In Figure 5, UJs
o and UJp

o will re-instrument

TABLE II: Notation key.
α Meaning

First uppercase letter
U Usage Unaware
A Usage Aware

Second uppercase letter
J Finds changed Jars
C Finds changed Class files
B Finds changed Bytecode

First superscript position
s Re-instruments sequentially
p Re-instruments in parallel

Second superscript position
d Checks usage dynamically
s Checks usage statically

Subscript
o Checks changes online
h Checks changed hashes

classes T, L1, L2, L3, and
L4 because at least one li-
brary class changed. UJs

o and
UJp

o can be fast if library
changes are small or occur
infrequently. Otherwise, re-
instrumenting whole libraries
can be expensive [52].

To reduce wasted re-
instrumentation in libraries,
six usage-unaware IMOP
techniques aim to re-
instrument only changed
library classes, without
incurring the cost to reason
about whether the CUT
uses those classes. These

techniques are as follows:
• UCs

o uses diff to compare .class files in both versions of
libraries and re-instruments only those that differ. In Figure 5,
though the library changed, UCs

o only re-instruments T, L1,
L2, and L3; it does not re-instrument the unchanged L4.

• UBs
o first cleans changed .class files to ignore their debug

information, then it checks if the resulting bytecode was
modified. Changing only debug information modifies .class
files but not the bytecode that is run. Lastly, only modified
.class files with changed bytecode are re-instrumented.

• UBs
h is similar to UBs

o, but it pre-computes some steps in
the old revision to reduce analysis time in the new revision.
In the first run, UBs

h stores a checksum of bytecode in each
.class files on disk. Then, for each changed .class file in
a new revision, UBs

h computes and compares the checksum
of its cleaned bytecode with the one it loads from disk. If
the checksums differ, then UBs

h re-instruments the .class
file and updates the corresponding checksum on disk.
UBs

o and UBs
h only re-instrument T, L2, and L3; they do not

re-instrument L1, whose .class file changed but its cleaned
bytecode did not. UCs

o, UBs
o, and UBs

h re-instrument all such
.class files in sequence. Their parallel analogs—UCp

o, UBp
o,

and UBp
h, respectively—use multiple threads.

2) Usage-Aware, Framework-Agnostic Techniques: Four
agnostic techniques are usage aware (A): they aim to only
re-instrument bytecode that changed and that the CUT uses.
Such used .class files with changed bytecode can be fewer
than those in §III-B1 (saving re-instrumentation time). But, to
achieve end-to-end speedup, checking for usage must be fast.
• ABsd

h finds used classes, Loaded, as those that the JVM
loads. Then it re-instruments only .class files in Loaded

whose cleaned bytecode changed. Using Loaded from an old
revision to choose what to re-instrument in a new revision is
unsafe: changes can cause more classes to be loaded in the
new revision. So, ABsd

h runs tests twice in the new revision:
(i) run tests without RV to update Loaded; (ii) find, clean,
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TABLE III: Features in each IMOP technique. ✓: feature is present. ✗: feature is absent. “n/a”: not applicable.
UJs

o UJp
o UCs

o UCp
o UBs

o UBp
o UBs

h UBp
h ABsd

h ABpd
h ABss

h ABps
h ajcdef ajcone

Incremental CUT instrumentation ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Incremental lib instrumentation ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Framework agnostic ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗
One cache per loader n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a ✓ ✗
Usage aware ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓
Check usage statically ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗
Parallel re-instrumentation (lib) ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✗
Check bytecode difference ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗
Check class file difference ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Store old hashes n/a n/a n/a n/a ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

and re-instrument changed .class files in Loaded whose
bytecode changed, and (iii) re-run tests with RV.

• ABss
h finds used classes, Reachable, as those reachable

from CUT nodes in a statically computed class dependency
graph (CDG). In brief, CDG nodes are types (.class files) in
code, tests, or libraries. There is a directed edge from node A

to node B if A can use B. Also, B is reachable from A if there
is a path from B to A. First, ABss

h generates CDG. For new
jars, ABss

h instruments .class files that are in Reachable.
If a jar is updated, then the .class files to re-instrument
are obtained as those in Reachable whose cleaned bytecode
changed. Lastly, even if a jar did not change, changes to the
CUT can alter the control flow such that previously unused
(and un-instrumented) library classes are now used in the new
revision. In this case, ABss

h finds and instruments all .class
files that are not in the old CDG’s Reachable but are in the
new CDG’s Reachable. The new CDG is saved to disk.

In Figure 5, ABss
h and ABsd

h will only re-instrument T and L2;
they will not re-instrument L3, which changed but is not used
by any CUT class. ABsd

h and ABss
h re-instrument all identified

.class files in sequence. Their parallel analogs, ABpd
h and

ABps
h , respectively, use multiple threads. ABss

h and ABps
h are

safe by design. But, in practice, their safety depends on the
soundness of the static analysis used to build the CDG.

3) Usage-Aware, Framework-Specific Techniques: Some
instrumentation frameworks (e.g., AspectJ’s ajc) are com-
pilers. So, they may already support incremental instrumen-
tation that can be exploited for evolution-aware RV. Native,
framework-specific incremental instrumentation can be fast.
But, there are disadvantages:
1. Supporting incremental compilation is hard [90], [91], [110]

and can make IMOP slower (if there are many classes to
re-instrument [52]) or unsafe (if bugs in the compiler make
it fail to re-instrument some changed classes).

2. RV tool developers may not have expertise to fix com-
piler bugs or integrate better with RV, so the resulting
instrumentation-driven techniques may become reliant on
compiler developers who are already pressed for time.

3. Some general-purpose (e.g., ASM [7], BCEL [16],
DiSL [89], Javassist [64]) and RV-inspired (e.g.,
BISM [115]–[118]) frameworks do not support incremental
instrumentation. Others, e.g., ByteBuddy [24] support
incremental instrumentation of CUT, but not libraries.

4. Compiler-specific incremental instrumentation could make

it harder for RV tool developers to switch among these
instrumentation tools, leading to “vendor lock-in”.

Two IMOP techniques are AspectJ-specific; JavaMOP (the RV
tool that we use in this paper) uses AspectJ. Also, 11 of 18 RV
tools for Java in a publicly-available list [109] that is crowd-
sourced by the RV research community also use AspectJ
for instrumentation. So, our results may generalize beyond
JavaMOP. Lastly, we discovered experimental support for
incremental instrumentation in the AspectJ compiler’s (ajc)
source code [4]. This support is not part of AspectJ’s public
or advertised APIs or options. The advertised support [1] does
not work for libraries, so it is unfit for IMOP. We next describe
these two ajc-specific IMOP techniques.
• ajcdef stores checksums of all loaded .class files (CUT

plus libraries) that it instruments in the old revision. Then,
in the new revision, it compares checksums of loaded .class
files with those from the old revision. If a .class file’s check-
sums in both revisions are the same, then the instrumented
.class file from the old revision is fetched from a cache and
re-used in the new revision. If the checksums differ, then the
.class file in the new revision is re-instrumented, added to
the cache, and its checksum is updated for use in the next
revision. ajcdef uses one cache per classloader.

• ajcone works like ajcdef , but it uses one cache for all class-
loaders. ajcone’s caching also uses a slower data structure.

In Figure 5, ajcdef and ajcone will re-instrument T, L1, and
L2 even though L2’s cleaned bytecode did not change. That
is, these framework-specific techniques would imprecisely re-
instrument a changed .class file even if its bytecode has not
changed since the old revision.
Summary of IMOP techniques. Table III summarizes IMOP
techniques’ main features, for ease of reference.

C. Implementation

We implement IMOP’s workflow (Figure 4) and techniques
(§III-B) in a Maven plugin, for easier integration with Maven-
based Java projects. After installation, users only need to
change a few lines in a Maven configuration file (pom.xml).
We only implement IMOP for Maven to focus our evaluation
on the techniques, which are not Maven specific. Future work
can support other build systems.

We choose JavaMOP because it was evaluated at scale dur-
ing testing of open-source projects [65], [78], [80], [82], [94],
[126]. It is not clear that other RV tools can simultaneously
monitor 160 specs during software testing. Some RV tools
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TABLE IV: Summary statistics on 66 projects that we evalu-
ate: no. of test methods (#Tests), test time w/o RV in seconds
(t), lines of code (SLOC), % statement coverage (covs), %
branch coverage (covb), no. of GitHub commits (#SHAs),
years since first commit (age), and no. of stars (#8).

#Tests t SLOC covs covb #SHAs age #8

Mean 265.8 9.1 12,658.5 66.6 57.7 581.6 9.8 621.3
Med 79.5 3.5 5,294.0 70.8 60.9 244.5 10.0 59.5
Min 2 1.5 559 0.4 0.3 38 1 1
Max 4,232 74.7 2.1×105 99.2 99.3 5,144 22 11,993
Sum 17,546 598.4 8.4×105 n/a n/a n/a n/a 41,009

can only check one spec at a time [65], which would mean at
least a 160x overhead in our case. Others require some manual
setup that would not be feasible at our scale.

IMOP uses the same code for checking bytecode-level
changes that is used in several open-source RTS tools [38],
[48], [83], [85], [119] and eMOP [126]. Also, IMOP uses
jdeps and STARTS to build the CDG (§III-B2). But, we
extend STARTS to also include library classes in the CDG—
STARTS only reasons about changed libraries at the coarse-
grained level of jars.

To find loaded classes (ABsd
h and ABpd

h ), IMOP first
runs tests with the −verbose : class JVM flag and
post-processes the output. IMOP only invokes JavaMOP
for monitoring, preventing it from re-instrumenting the
code. Lastly, to integrate IMOP with ajc (§III-B3), we
run ajc with the aj.weaving.cache.enabled = true and
aj.weaving.cache.impl = shared options.

IV. EVALUATION

We answer the following research questions:
RQ1. How do the runtime overheads of IMOP’s techniques

compare with those of existing approaches?
RQ2. How does the safety of IMOP’s techniques compare

with those of existing techniques?
RQ3. How do IMOP’s speedups compare to those from just

applying regression test selection (RTS) to full RV?
RQ4. How do internal metrics of IMOP’s techniques compare

with those of existing techniques?
RQ1 measures IMOP’s overheads, comparing it with those
of full RV and two spec-driven techniques. RQ2 measures
IMOP’s safety and compares it with those of two spec-driven
techniques. RQ3 combines and compares IMOP with regres-
sion test selection (RTS). RQ4 assesses IMOP’s internals.

A. Experimental setup

Evaluated projects and specs. We evaluate IMOP on 2,028
revisions of 66 open-source projects, using 160 specs of
correct JDK API usage. Table IV shows summary statistics on
the evaluated projects; the caption describes the columns and
“n/a” are meaningless sums. (Full per-project statistics are in
our appendix.) 36/66 projects are from the 37 instrumentation-
dominated (having the largest differences in total RV time
minus monitoring time) ones used in Guan and Legunsen’s
study [52] to evaluate a proof-of-concept (§VII compares
with that work in more detail). We exclude one of the

37 projects from Guan and Legunsen’s study because of a
limitation which caused our bytecode-cleaning infrastructure
to fail on that excluded project. 12/66 evaluated projects
are from the instrumentation-dominated ones from eMOP’s
evaluation [126] that we can run; we exclude others because
their tests failed during our experiments. Finally, we select an
additional 18 projects from Guan and Legunsen’s study [52];
they are the next most instrumentation-dominated ones that
were not used to evaluate the prototype in that study.

For all 48 projects from prior work [52], [126], we use
the same GitHub revisions as those prior works per project.
For the other 18, we select up to 25 historical revisions from
GitHub where at least one Java file changed, code compiles,
and tests pass with and without JavaMOP and IMOP.

The 160 specs that we use are from prior work [76], [87];
they were used to evaluate RV during testing [52], [65], [77],
[78], [80], [82], [94], [126] and helped find many bugs that
testing alone missed.
Baselines. We compare IMOP to full RV (re-running Java-
MOP’s evolution-unaware RV from scratch after every
change), two spec-driven techniques, and tRV—the best possi-
ble theoretical lower bound on RV overhead which assumes an
ideal instrumentation time of zero, measured as full RV time
minus instrumentation time. We next summarize the two spec-
driven techniques that we compare with, using the names—psc1
and pscℓ3 —that their authors use; see full details in [78].

psc1 is the faster of two safe-by-design spec-driven tech-
niques. psc1 first finds classes impacted by code changes as
those (i) whose cleaned .class file changed (∆), (ii) that
transitively depend on ∆ (dependents), (iii) that ∆ transitively
depends on, and (iv) that ∆ and its dependents can pass data
to. Then, psc1 finds affected specs as those related to impacted
classes. Lastly, psc1 re-monitors only affected specs, but it does
not instrument them in un-impacted classes. The idea is that
if the set of impacted classes is small, then affected specs are
likely to be a small subset of all available specs.

In contrast to psc1, pscℓ3 is the fastest of 10 unsafe-by-design
techniques that are deliberately designed to trade safety for
speed. An evolution-aware RV technique is safe if it finds
all new violations after a code change [78]. pscℓ3 can miss
new violations after a code change because: it (i) only finds
impacted classes as ∆ and its dependents; and (ii) does not
instrument 3rd-party libraries (not even used library classes).
We use the psc1 and pscℓ3 implementations in eMOP [126].
Running experiments. We write Maven extensions to in-
tegrate JavaMOP, IMOP, eMOP, and a profiler (RQ4) into
evaluated projects. We write scripts to run tests, run RV, and
analyze results. We run all experiments in Docker containers,
to aid reproducibility. Our artifact has our Docker files and
how to use them. We use an Intel® Xeon® Gold 6348 machine
(112 cores) with 512GB of RAM running Ubuntu 20.04.4 LTS
and Java 8 to run experiments that report absolute time.

B. RQ1: Runtime overheads

Aggregated results. Figure 6 shows the results of our perfor-
mance evaluation. There, we show absolute times and relative
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Fig. 6: Absolute and relative overheads across all 66 projects. Blue bars: safe-by-design techniques. Olive bar: unsafe-by-design
spec-driven pscℓ3 . Red bar: a safe-by-design framework-specific ajcdef that fails in 19 of 66 projects.

TABLE V: Summary statistics on speedups per project by
the best-performing framework-specifc and framwork agnostic
IMOP technique, relative to full RV (mop), psc1, pscℓ3 , and full
RV minus instrumentation time (tRV).

mop
agnostic

mop
specific

psc1
agnostic

psc1
specific

pscℓ3
agnostic

pscℓ3
specific

agnostic
tRV

specific
tRV

Mean 10.0 6.2 5.8 3.9 2.4 1.5 1.9 4.1
Med 8.3 4.8 5.8 2.8 2.1 1.4 1.6 2.5
Min 2.4 0.9 1.4 0.1 0.5 0.1 0.7 0.8
Max 40.2 20.8 17.8 13.8 6.7 4.4 5.2 16.8

overheads when times are summed across all 66 projects,
excluding the initial revision in each project. Absolute time
is the end-to-end time from Maven invocation to termination.
Relative overhead is the ratio of time to run (evolution-aware)
RV to time to run tests without RV; the lower, the better. The
yellow line in Figure 6 marks the time to run tests without
RV. The red line marks tRV time. The relatively small time
difference (see legend) between the red and yellow lines shows
that instrumentation, not monitoring, dominates RV overhead
during testing in these projects.

Figure 6 shows that all simple, framework-agnostic, safe-by-
design IMOP techniques speedup full RV (mop) and outper-
form both psc1 and pscℓ3 . In aggregate, these IMOP techniques
are 4.1x–7.6x faster than full RV, 2.7x–4.9x faster than safe
psc1, and 1.2x–2.1x faster than unsafe pscℓ3 , despite the fact that
we did not sacrifice safety in their design. Across all projects
and their revisions, IMOP saves up to 40.4 hours compared
to full RV and saves 24.2 hours and 6.9 hours, compared to
safe and unsafe spec-driven techniques, respectively.

Figure 6 also seems to show that framework-specific ajcdef

provides good speedups compared to full RV, psc1 and pscℓ3 ,
and that ajcdef seems to be faster than 10 of 12 agnostic
IMOP techniques. But, these results are inconclusive: ajcdef ’s
instrumentation fails in 19/66 projects. ajcone, the other safe,
framework-specific technique does not fail in any project but
it is slower than all IMOP’s agnostic techniques. However,
ajcone is 1.5x faster than psc1 and 2.3x faster than full RV.

We asked ajc developers if ajcdef failures are due to
bugs [3]. Their response reinforces our sense that framework-
specific incremental instrumentation is hard to get right and
may be unreliable. An ajc maintainer (i) pointed us to a
similar bug report whose solution did not fix our issues,

(ii) confirmed that the problem was in ajc since at least 2017,
and (iii) said if incremental instrumentation “ever worked ...
and just broke a long time ago or if it never worked ..., is
yet to be established”. Worse, the maintainer has now quit
the AspectJ project, and may no longer contribute without
financial support [2]. We therefore exclude ajcdef ’s result from
timed experiments if its instrumentation fails on a project.
More detailed results. Table V shows summary statistics on
speedups per-project (our appendix has more data, e.g., best-
performing technique per project). There, agnostic techniques
are up to 40.2x (mean: 10x), 17.8x (mean: 5.8x), and 6.7x
(mean: 2.4x) faster than full RV, psc1, and pscℓ3 , respectively.
The corresponding numbers for framework-specific techniques
are 20.8x (mean: 6.2x), 13.8x (mean: 3.9x), and 4.4x (mean:
1.5x). So, on a per-project basis, agnostic techniques tend
to provide more speedups than framework-specific ones. The
0.1x minima in Table V are for a project where psc1 and pscℓ3
outperform the best framework-specific technique (ajcdef fails
and ajcone is very slow on that project).

The two rightmost columns in Table V show how much
slower IMOP’s best-performing techniques are, compared to
tRV (the best theoretical lower bound on RV overhead that
assumes zero instrumentation cost). There, “min” is how
closely IMOP approaches tRV. At best, IMOP is 30% faster
than tRV, which is evolution-unaware and may run tests with
monitoring even if changes do not modify cleaned bytecode.
On average, the best-performing agnostic IMOP technique is
88% (max: 5.2x) slower than tRV. These tRV-related results
show how closely IMOP approaches theoretical evolution-
unaware RV with no instrumentation cost.

Figure 7 shows how often the speedup achieved by each
technique is among the top three; darker colors mean higher
rank and each row sums up to the number of evaluated projects
(66). Such ranking is not visible from the aggregated results
(Figure 6). Our appendix has a full 17×17 ranking and all
techniques’ rank per project. We make five main observations:

1. There is no universally best IMOP technique: 11/14 IMOP
techniques provide the best speedup in at least one project.
Also, each IMOP technique except ajcone is in the top-
three at least three times. This result justifies having several
IMOP techniques, and exploring the tradeoff space (§III).109



Fig. 7: Heat map showing how often a technique provides one of the top-three speedups per project. The top, middle, and
bottom rows show no. of projects where a technique provides the best, 2nd-best, and 3rd-best speedup, respectively.

TABLE VI: Safety results for two spec-driven techniques and IMOP before (pre) and after (post) our manual inspection.
psc1 pscℓ3 UJs

o UJp
o UCs

o UCp
o UBs

o UBp
o UBs

h UBp
h ABss

h ABps
h ABsd

h ABpd
h ajcdef ajcone

Missed new violations (pre, of 1579) 168 403 72 75 72 71 147 148 145 149 191 187 117 117 135 69
Missed new violations (post, of 1160) 14 44 0 0 0 0 0 0 0 0 17 17 0 0 40 0
Unsafe revisions (pre, of 2028) 70 173 35 38 34 35 66 68 66 68 117 115 59 58 75 34
Unsafe revisions (post, of 2028) 10 26 0 0 0 0 0 0 0 0 9 9 0 0 15 0
Unsafe projects (pre, of 66) 19 23 11 10 10 11 23 23 22 23 24 24 21 20 17 10
Unsafe projects (post, of 66) 7 14 0 0 0 0 0 0 0 0 7 7 0 0 6 0

2. Agnostic techniques provide the best speedups in 52/66
projects. This result may be affected by ajcdef ’s failures,
but it suggests that continued improvement of agnostic
techniques would be worthwhile.

3. When agnostic techniques provide the best speedup, usage-
unaware ones perform best in 17/52 projects. So, the added
complexity of checking if changed library code is used by
the CUT is not needed in a good fraction of projects.

4. Surprisingly, ABsd
h and ABpd

h , which run tests twice,
provide the best speedup in 10 projects.

5. IMOP outperforms spec-driven techniques in all but two
projects where IMOP is just two and six seconds slower.

The important question of how users should choose what
IMOP technique to use requires more research. §V discusses
initial observations from our qualitative analysis.

C. RQ2: Safety

Table VI shows the results of our safety evaluation. A
safe evolution-aware RV technique finds all new violations
after a code change [78]. In coming up with this definition
of safety, Legunsen et al. assume a setting where users are
aware of violations in the old revision, and are more interested
to see new violations after code changes [78]. To find new
violations, we run Violation Message Suppression (VMS) [78],
an evolution-aware RV technique that reduces human time to
inspect violations; it does not reduce runtime overhead. VMS
hides violations in unchanged lines of code; users can view
hidden violations, but only new ones are shown by default.

We run eMOP’s VMS implementation [126] on full RV in
a separate un-timed experiment and report numbers of missed
VMS-reported violations before (“pre” rows) and after (“post”
rows) our manual inspection. The 1st, 3rd, and 5th rows
show numbers of missed VMS-reported violations, number
of revisions with a missed violation, and number of projects
with an unsafe revision before inspection, respectively. The
2nd, 4th, and 6th rows show these numbers after inspection.

Our inspection shows that 419 of 1,579 VMS-reported
violations are not related to changes (difference between the
1st and 2nd rows in the first column of Table VI). Rather, they
are due to non-deterministic test executions (80 violations),
false positives or bugs in VMS (287 violations), or false

positives due to bytecode cleaning in IMOP misleading VMS
about line numbers (52 violations). Precisely matching lines
of code locations across revisions is hard [53], [86], [102],
leading to VMS’ false positives. We have reported two related
VMS bugs to the eMOP developers [121], [122].

After inspection, we find that 11 IMOP techniques—all
eight usage-unaware IMOP techniques, and three of six usage-
aware ones—are safe in our experiments. Among the three
usage-aware techniques that miss a new violation, the overall
ratio of unsafe revisions is small (0.44%–0.74%). These safety
results are encouraging. Also, IMOP finds 35 violations that
spec-driven techniques miss. If all IMOP’s techniques find a
violation but at least one spec-driven technique does not and
we find no evidence of test non-determinism, we count that
violation as being missed by that spec-driven technique.

We analyze why new violations are missed, to better un-
derstand how to make IMOP’s techniques safer in practice.
ABss

h and ABps
h use static analysis and miss 17 new violations

related to using reflection to load classes. ajcdef misses 40 new
violations that are due to ajc failures during instrumentation.
Note that these techniques are safe by design (unlike the
unsafe-by-design techniques in [78], we did not deliberately
design them to be unsafe). Future work is needed to also make
the implementations of three (of 14) techniques safe.

Unsurprisingly, pscℓ3 (spec driven and unsafe by design) is
the most unsafe in our experiments; it misses 44 new violations
(4%). 37/44 are due to pscℓ3 ’s use of a less conservative (than
psc1) static analysis to find affected specs to re-monitor. The
other seven are due to two bugs in eMOP’s implementation
that we have reported [106], [107]. psc1 (safe by design) misses
14 violations due to the same eMOP bugs that affect pscℓ3 .

We conclude that usage-unaware IMOP techniques should
be used when safety is critical: they are safe, faster than
unsafe pscℓ3 , simple, and often provide the best speedups. Other
settings can use faster usage-aware techniques; two of them are
IMOP’s fastest techniques (Figure 6), but they show very small
degrees of unsafety that should be improved in the future.

D. RQ3: Comparison with RTS
Evolution-aware RV re-runs all tests in a new revision,

while regression test selection (RTS)—a regression testing
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Fig. 8: Comparing RTS+full RV (mop), with best-performing IMOP technique, psc1, pscℓ3 , and their combinations with RTS.

technique—aims to speed up testing by only re-running af-
fected tests [125]. We compare the runtime overhead and
safety of combining RTS with full RV with those of the best-
performing agnostic and framework-specific IMOP technique
per project, psc1, pscℓ3 , and their combinations with RTS. We
are the first to evaluate RTS with instrumentation-driven tech-
niques; others evaluated RTS with spec-driven techniques [80].

Due to the many combinations, we run RTS experiments
only on the top 10 Table IV projects (in decreasing order of
speedups) that we could successfully run with Ekstazi [38],
[48] and STARTS [83], [119]—two open-source RTS tools that
use dynamic and static analysis, respectively, to find affected
tests. We could not simply pick the top 10 projects because
Ekstazi failed for some of them due to a known problem [37].
The 10 projects that we use in RQ3 have a total of 365
revisions. We seamlessly integrate both Ekstazi and STARTS
into IMOP, so running RTS with IMOP does not require
additional setup from the users.

Figure 8 shows the RTS-related results. Speedups from these
techniques with and without RTS are shown as ratios of each
technique’s time to full RV time (the 1.0 line); the further
below 1.0, the better. STARTS selects 33%–83% (mean: 62%)
of all tests, while Ekstazi selects 26%–78% (mean: 45%).

We make several observations from Figure 8. (i) In all 10
projects; RTS speeds up full RV, but RTS+full RV never
yields the best speedup. (ii) RTS speeds up psc1 in all 10
projects (Ekstazi+psc1 is slower than psc1 in four projects). But,
RTS+psc1 never yields the best speedup. (iii) RTS (STARTS)
speeds up pscℓ3 in only 1/10 project. pscℓ3 is already fast, so RTS
analysis time becomes an overhead. Also, RTS+pscℓ3 never
provides the best speedup. (iv) For the same reason as with
pscℓ3 , combining RTS with IMOP often causes slowdowns.
But, RTS speeds up an IMOP technique in 5/10 projects.

Combining IMOP and psc1 with STARTS did not miss any
new violation. But, pscℓ3 misses two violations when combined
with Ekstazi because of limitations of pscℓ3 ’s static analysis.

Overall, IMOP outperforms RTS+full RV, but RTS+IMOP
is faster than IMOP alone in 5/10 evaluated projects. So, we
conclude that IMOP and RTS are orthogonal but complemen-
tary approaches to speeding up RV during testing of projects
where instrumentation time dominates RV overhead.

Fig. 9: Profiler statistics on where mop, psc1, pscℓ3 , and the best-
performing framework-specific and agnostic IMOP techniques
spend their runtimes across all 2,028 project revisions.

Fig. 10: Results from profiling RTS runs in 10 projects.

E. RQ4: Internal IMOP metrics

Profiler data. Figure 9 shows the profiler-reported proportions
of time spent on instrumentation (instr.), running the CUT
(project) and RV—monitoring, synchronization (“lock”) to
process events without races, and printing violations (which
can be costly [52]). We use the same procedure as [52], using
async-profiler [8], [62]. Profiler-related runs are not timed.

Figure 9 shows that (i) monitoring accounts for very lit-
tle proportion of RV time across all 66 evaluated projects;
(ii) IMOP techniques provide more speedups than psc1 and
pscℓ3 because they reduce more instrumentation time; and
(iii) agnostic techniques spend no runtime on instrumentation.
Agnostic techniques perform instrumentation at compile-time;
that time is included in RQ1. Framework-specific techniques
and full RV perform instrumentation during class loading.

Figure 10 shows the results of profiling the RTS runs (colors
mean the same as Figure 9). There, some reasons for the
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TABLE VII: No. of CUT classes, jars, and library classes re-
instrumented by five IMOP techniques across all projects.

UJs
o UCs

o UBs
o ABss

h ABsd
h

# CUT classes 23101 23101 20655 20655 20655
# jars 1933 1933 1933 1352 1307
# library classes 776172 516711 422775 314869 156000

trends in RTS results (RQ3) is clearer. For example, RTS+full
RV is faster than full RV because it spends less time on
CUT and instrumentation. But RTS+full RV still spends more
time on instrumentation than IMOP techniques (alone or in
combination with RTS), explaining why it is slower. Similar
trends hold for other combinations with RTS.
Re-instrumented class counts. Table VII shows counts of
CUT classes, jars, and library classes that UJs

o, UCs
o, UBs

o,
ABss

h , and ABsd
h re-instrument across all 66 projects. We only

show these techniques to save space; they showcase differ-
ences among (i) usage-unawareness (U) and usage-awareness
(A); (ii) finding changes at jar (J), .class (C), and bytecode
(B) levels; and (iii) checking usage statically (2nd superscript
is s) and dynamically (2nd superscript is d). We add a jar to
the second row if one of its classes is re-instrumented.

In Table VII, UJs
o re-instruments the most classes (it re-

instruments all classes in a jar if any of the jar’s contents
changed). By re-instrumenting only changed .class files in
changed jars, UCs

o re-instruments much less than UJs
o. Also,

by re-instrumenting only changed .class files whose bytecode
changed, UBs

o re-instruments fewer CUT and library classes
than UCs

o. ABss
h and ABsd

h are usage-aware, so they re-
instrument even fewer library classes than these usage-unaware
techniques. Overall, ABsd

h re-instruments the least; it is the
most precise (but it incurs overhead to run tests twice).

V. DISCUSSION

When does each IMOP technique tend to perform best?
We perform an initial qualitative analysis of program charac-
teristics that tend to hold when each IMOP technique performs
best. We find that framework-specific ajcdef tends to perform
better than agnostic techniques when few classes change.
When libraries change frequently, ABps

h tends to perform best
if the test-running time is long. For such projects, if the test-
running time is short, then ABpd

h ’s higher precision enables it
to outperform others. UJp

o tends to perform better than UCp
o

and UBp
o when a project switches major versions (in the

semantic versioning sense) of libraries often, and each such
switch modifies many library classes. In such cases, all three
techniques re-instrument almost all library classes involved.
But, UJp

o does not have the overhead of comparing each
.class file or cleaning the bytecode as UCp

o and UBp
o do.

For projects that frequently change the CUT (but not the
libraries), UBs

h and UBp
h tend to be the best techniques. This

initial analysis can be the first step towards more detailed
qualitative analysis and future work on automated prediction
of which IMOP technique to use for a project or code change.
Can IMOP work beyond AspectJ? IMOP also sup-
ports BISM [115]–[118]; a recently proposed instrumentation

Fig. 11: IMOP overheads relative to test time when using
BISM with and without evolution awareness in 10 projects.

framework for RV. BISM aims to address some drawbacks
(e.g., runtime overhead and learning curve) of AspectJ, the
dominant Java instrumentation framework in the RV literature.

We evaluate IMOP’s BISM support on the 10 RQ3 projects
by comparing (i) the overhead (relative to running tests without
RV) of using BISM to re-instrument all CUT and library
classes in each revision with (ii) the overhead of using BISM
to re-instrument only the changed .class files or bytecode
that the best-performing agnostic IMOP technique finds as
changed. We cannot evaluate BISM with monitoring as it was
not yet integrated with an RV tool (to our knowledge) and
re-engineering JavaMOP to use BISM could take years.

We observe from the BISM results in Figure 11 that:
(i) BISM also incurs high overheads to instrument all classes
in these projects, so high instrumentation overheads are not
specific to AspectJ. (ii) Evolution-awareness reduces BISM
overhead. But, BISM crashes on 118/364 jars that it encoun-
tered. BISM was only recently proposed and it is not yet open
sourced. So, we report these crashes to the BISM authors to
help improve the tool.
What if IMOP trades safety for speed? pscℓ3 is unsafe but
fast and can perform well on some projects (Table VI, [78],
[126]). So, we experiment with four techniques in IMOP that
trade safety for speed by design and evaluate them on all
66 projects. (These experimental techniques are not part of
IMOP; details about them are in our artifact). They are as
unsafe as pscℓ3 , but much slower than the best-performing safe
IMOP technique per project, and barely faster than pscℓ3 .
Sensitivity to thread counts. By default, IMOP uses 20
threads in its parallel techniques, but users can change this
thread count via the command line. We use 20 after performing
a preliminary analysis of the sensitivity of these IMOP tech-
niques to the thread counts. For this analysis, we run the best-
performing, parallel usage-aware and usage-unaware IMOP
technique per project on all revisions of the 10 RQ3 projects,
using 10, 20, and 40 threads. Table VIII shows the results:
using 20 threads saves more time than 10 threads, but using
40 instead of 20 threads does not save much.

VI. THREATS TO VALIDITY AND LIMITATIONS

Threats to validity. To reduce the threat of poor general-
ization to other instrumentation frameworks, IMOP supports
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TABLE VIII: IMOP times with 10, 20, and 40 threads.
10 threads 20 threads 40 threads

Usage unaware (best) 3492.6s 3391.7s 3399.7s
Usage aware (best) 3323.1s 3279.6s 3268.9s

AspectJ and BISM. Our results may not generalize beyond
the projects and their historical GitHub revisions that we
evaluate. But, we show that amortizing instrumentation costs
can provide more savings than existing approaches on 66
projects, which is the largest set evaluated with evolution-
aware RV to date. Our manual inspection to check safety
may miscategorize some violations. To reduce this threat, a
co-author checked the results multiple times. These manual
inspections were needed in the first place because of test non-
determinism, as well as VMS bugs and limitations. Future
work can target how to mitigate these problems.
Limitations. We address high RV overheads, which is only
one of several problems to be solved towards broader RV
adoption. We do not, e.g., address the difficulty of finding
or improving specs, reduce tedium of violation inspection, or
check if violations are true bugs. These problems are subjects
of other research [47], [51], [80], [82], [94], [103], [120].

Our work may be limited to the kind of API-level specs we
use, but these are the largest publicly available set. We make
no claims beyond the popular RV style in JavaMOP (other
styles exist [11], [23], [43], [58], [100]). Future work can
investigate instrumentation-driven techniques for other kinds
of specs, e.g., project-specific ones, and RV styles.

The projects on which we evaluate IMOP are those where
instrumentation dominates the RV time. Prior work [52] shows
that RV overhead in more than 85% of 1,544 evaluated projects
is dominated by instrumentation, not monitoring. We do not
expect IMOP to provide similar speedups in projects where
monitoring time dominates RV overhead.

VII. RELATED WORK

The most relevant work are spec-driven evolution-aware RV
techniques [77], [78], [126], which we discuss and compare
with in several parts of the paper. Here, we put IMOP in
context with respect to the empirical study that inspired it,
and discuss other related work.
Motivating study. IMOP is inspired by Guan and Legunsen’s
recent study which found that RV overheads during testing is
often dominated by instrumentation [52]. They also provided
preliminary evidence that amortizing instrumentation costs
can speed up RV, psc1 and pscℓ3 . But, we are the first to
realize instrumentation-driven evolution-aware RV techniques
in a tool, evaluate its performance on a larger scale, compare
and combine instrumentation-driven techniques with RTS,
and evaluate its safety. Their study evaluates two proofs-of-
concept, one of which assumes a non-existent repository where
all jars are pre-instrumented for RV. We refine and implement
their other proof-of-concept into UJs

o, and add 13 techniques.
Instrumentation in RV and other program analyses. Cassar
et al. [25] survey instrumentation approaches in RV. Other
works distribute instrumentation costs across users [20], [88]

or develop instrumentation for sampling events [95]. These
works are not concerned with RV during testing of evolving
software. Reducing instrumentation costs has not received a
lot of RV research attention, perhaps because most prior work
(i) target deployed software, where instrumentation is a one-
time cost; or (ii) were evaluated on DaCapo benchmarks [18]
and measured performance after system warm-up. For RV
during testing, especially in continuous integration, reducing
high instrumentation overhead as IMOP does is critical.
Reducing RV overhead. Many works reduce RV’s over-
head [5], [9], [12], [13], [15], [19]–[23], [26], [29], [35],
[44]–[46], [66], [68], [78], [87], [95], [97], [98], [101], [124],
[126], but they often target the reduction of monitoring,
not instrumentation, costs. IMOP is the first framework that
reduces instrumentation costs in an evolution-aware manner.
Regression testing. IMOP is related to regression testing [41],
[57], [125] which aims to speed up testing during software
evolution. RTS [42], [49], [50], [54], [56], [75], [81], [85],
[96], [104], [105], [112], [114], [123], [128]–[130] is a re-
gression testing technique that aims to speed up regression
testing by re-running only affected tests after a code change.
We compare and combine IMOP with RTS (§IV-D). In the
future we plan to further speed up this integration by building
the dependency graph only once in some cases where certain
IMOP techniques build their own dependency graph, and RTS
separately builds its own graph. Also, we leave as future work
the evaluation of RV with other regression testing techniques,
such as test-suite minimization [17], [55], [69], [74], [92], [99],
[111], [113] or test-suite prioritization [39], [40], [72], [127].

VIII. CONCLUSIONS

We present the first instrumentation-driven evolution-aware
RV framework, IMOP, and its in-depth evaluation. The idea
behind IMOP is simple: in a new code revision, re-instrument
only changed code and re-use the old revision’s instrumenta-
tion for unchanged code. On 66 projects where instrumentation
dominates RV overhead, IMOP provides more speedup and is
safe, compared to the state-of-the-art spec-driven evolution-
aware RV techniques that use complex program analysis.
IMOP is faster than just combining regression test selection
(RTS) with RV, but IMOP and RTS are complementary.
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“Techniques for evolution-aware runtime verification,” in ICST, 2019.

[79] O. Legunsen, “Evolution-Aware Runtime Verification,” Ph.D. disserta-
tion, University of Illinois at Urbana-Champaign, USA, 2019.

[80] O. Legunsen, N. A. Awar, X. Xu, W. U. Hassan, G. Roşu, and
D. Marinov, “How effective are existing Java API specifications for
finding bugs during runtime verification?” ASE Journal, vol. 26, no. 4,
2019.

[81] O. Legunsen, F. Hariri, A. Shi, Y. Lu, L. Zhang, and D. Marinov, “An
extensive study of static regression test selection in modern software
evolution,” in FSE, 2016.

[82] O. Legunsen, W. U. Hassan, X. Xu, G. Roşu, and D. Marinov, “How
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G. Roşu, “RV-Monitor: Efficient parametric runtime verification with
simultaneous properties,” in RV, 2014.

[88] M. Madsen, F. Tip, E. Andreasen, K. Sen, and A. Møller, “Feedback-
directed instrumentation for deployed JavaScript applications,” in ICSE,
2016.

[89] L. Marek, A. Villazón, Y. Zheng, D. Ansaloni, W. Binder, and Z. Qi,
“DiSL: A domain-specific language for bytecode instrumentation,” in
AOSD, 2012.

[90] “Maven is broken by design,” https://blog.ltgt.net/
maven-is-broken-by-design/.

[91] “Incremental compilation doesn’t work unless useIncremental-
Compilation is set to ’false’,” https://issues.apache.org/jira/browse/
MCOMPILER-209.

[92] S. McMaster and A. Memon, “Fault detection probability analysis for
coverage-based test suite reductionb,” in ICSM, 2007.

[93] P. O. Meredith, D. Jin, D. Griffith, F. Chen, and G. Roşu, “An overview
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